An Empirical Model for the Ignition of Aluminum Particle Clouds Behind Blast Waves

نویسندگان

  • Kaushik Balakrishnan
  • Allen L. Kuhl
  • John B. Bell
  • Vincent E. Beckner
چکیده

An empirical model for the ignition of aluminum particle clouds is developed and applied to the study of particle ignition and combustion behavior resulting from explosive blast waves. This model incorporates both particle ignition time delay as well as cloud concentration effects on ignition. The total mass of aluminum that burns is found to depend on the model, with shorter ignition delay times resulting in increased burning of the cloud. A new mass-averaged ignition parameter is defined and is observed to serve as a useful parameter to compare cloud ignition behavior. Investigation of this variable reveals that both peak ignition as well as time required to attain peak ignition are sensitive to the model parameters. Overall, this study demonstrates that the new ignition model developed captures effects not included in other combustion models for the investigation of shock-induced ignition of aluminum particle clouds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An empirical model for the ignition of explosively dispersed aluminum particle clouds

An empirical model for the ignition of aluminum particle clouds is developed and applied to the study of particle ignition and combustion behavior resulting from explosive blast waves. This model incorporates both particle ignition time delay as well as cloud concentration effects on ignition. The total mass of aluminum that burns is found to depend on the model, with shorter ignition delay tim...

متن کامل

Ignition of Aluminum Particle Clouds Behind Reflected Shock Waves

Extending on a companion paper in this colloquium, the dispersion, ignition and combustion characteristics of aluminum particle clouds is investigated numerically behind reflected shock waves. It is observed that a higher proportion of the Al cloud by mass burns for a higher initial cloud concentration. Vorticity from the cloud wake and from that deposited by the reflected shock cause the parti...

متن کامل

A MODIFIED COMPRESSIBLE SMOOTHED PARTICLE HYDRODYNAMICS (MCSPH) METHOD AND ITS APPLICATION ON THE NUMERICAL SIMULATION OF LOW AND HIGH VELOCITY IMPACTS

In this study a Modified Compressible Smoothed Particle Hydrodynamics (MCSPH) method is introduced which is applicable in problems involve shock wave structures and elastic-plastic deformations of solids. As a matter of fact, algorithm of the method is based on an approach which descritizes the momentum equation into three parts and solves each part separately and calculates their effects on th...

متن کامل

Magnitude of vibration triggering component determines safety of structures

Transmission of blast waves is a complex phenomenon and the characteristics vary with blast design parameters and geo-technical properties of medium. Frequency of vibration and triggering component for structural excitation generally quantifies safe vibration magnitude. At closer distance or higher elevations than the blast locations, vertical or transverse component will be the first arrival t...

متن کامل

Burning and Ignition Characteristics of Single Aluminum and Magnesium Particle

Ignition and burning characteristics of single aluminum and magnesium particles are experimentally investigated. Burning time, ignition delay, flame temperature, and ignition temperature were measured. The single metal particle (30-100 μm in diameter) is uplifted by an electrodynamic levitator, exposed and ignited by a CO2 laser. The thermal radiation intensity was measured using the photomulti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011